人重新识别(Reid)任务中存在许多具有挑战性的问题,例如遮挡和比例变化。现有的作品通常试图通过使用单分支网络来解决这些问题。这一分支网络需要对各种具有挑战性的问题强大,这使得该网络覆盖。本文建议分割和征服Reid任务。为此目的,我们采用了几种自我监督操作来模拟不同的具有挑战性问题,并使用不同的网络处理每个具有挑战性的问题。具体地,我们使用随机擦除操作并提出一种新的随机缩放操作来产生具有可控特性的新图像。介绍了一般的多分支网络,包括一个主分支和两个仆人分支,以处理不同的场景。这些分支机构学习协同性并实现不同的感知能力。通过这种方式,Reid任务中的复杂场景得到有效地解散,每个分支的负担都被释放。来自广泛实验的结果表明,该方法在三个Reid基准和两个遮挡的Reid基准上实现了最先进的表演。消融研究还表明,拟议的方案和操作显着提高了各种场景的性能。
translated by 谷歌翻译
无监督的视频人重新识别(Reid)方法通常取决于全局级别功能。许多监督的Reid方法采用了本地级别的功能,并实现了显着的性能改进。但是,将本地级别的功能应用于无监督的方法可能会引入不稳定的性能。为了提高无监督视频REID的性能稳定,本文介绍了一般方案融合零件模型和无监督的学习。在该方案中,全局级别功能分为等于的本地级别。用于探索无监督学习的本地感知模块以探索对本地级别功能的概括。建议克服本地级别特征的缺点来克服全局感知模块。来自这两个模块的功能融合以形成每个输入图像的鲁棒特征表示。此特征表示具有本地级别功能的优点,而不会遭受其缺点。综合实验是在三个基准上进行的,包括PRID2011,ILIDS-VID和Dukemtmc-Videoreid,结果表明,该方法实现了最先进的性能。广泛的消融研究证明了所提出的计划,本地感知模块和全局感知模块的有效性和稳健性。
translated by 谷歌翻译
具有大量空间和时间跨境的情景中的人重新识别(RE-ID)尚未完全探索。这部分原因是,现有的基准数据集主要由有限的空间和时间范围收集,例如,使用在校园特定区域的相机录制的视频中使用的视频。这种有限的空间和时间范围使得难以模拟真实情景中的人的困难。在这项工作中,我们贡献了一个新的大型时空上次最后一个数据集,包括10,862个图像,具有超过228k的图像。与现有数据集相比,最后一个具有挑战性和高度多样性的重新ID设置,以及显着更大的空间和时间范围。例如,每个人都可以出现在不同的城市或国家,以及在白天到夜间的各个时隙,以及春季到冬季的不同季节。为了我们的最佳知识,最后是一个新的Perse Re-ID数据集,具有最大的时空范围。基于最后,我们通过对14个RE-ID算法进行全面的绩效评估来验证其挑战。我们进一步提出了一种易于实施的基线,适用于如此挑战的重新ID设置。我们还验证了初步训练的模型可以在具有短期和更改方案的现有数据集中概括。我们期待持续激发未来的工程,以更现实和挑战的重新识别任务。有关DataSet的更多信息,请访问https://github.com/shuxjweb/last.git。
translated by 谷歌翻译
Several self-supervised representation learning methods have been proposed for reinforcement learning (RL) with rich observations. For real-world applications of RL, recovering underlying latent states is crucial, particularly when sensory inputs contain irrelevant and exogenous information. In this work, we study how information bottlenecks can be used to construct latent states efficiently in the presence of task-irrelevant information. We propose architectures that utilize variational and discrete information bottlenecks, coined as RepDIB, to learn structured factorized representations. Exploiting the expressiveness bought by factorized representations, we introduce a simple, yet effective, bottleneck that can be integrated with any existing self-supervised objective for RL. We demonstrate this across several online and offline RL benchmarks, along with a real robot arm task, where we find that compressed representations with RepDIB can lead to strong performance improvements, as the learned bottlenecks help predict only the relevant state while ignoring irrelevant information.
translated by 谷歌翻译
Wearable sensors for measuring head kinematics can be noisy due to imperfect interfaces with the body. Mouthguards are used to measure head kinematics during impacts in traumatic brain injury (TBI) studies, but deviations from reference kinematics can still occur due to potential looseness. In this study, deep learning is used to compensate for the imperfect interface and improve measurement accuracy. A set of one-dimensional convolutional neural network (1D-CNN) models was developed to denoise mouthguard kinematics measurements along three spatial axes of linear acceleration and angular velocity. The denoised kinematics had significantly reduced errors compared to reference kinematics, and reduced errors in brain injury criteria and tissue strain and strain rate calculated via finite element modeling. The 1D-CNN models were also tested on an on-field dataset of college football impacts and a post-mortem human subject dataset, with similar denoising effects observed. The models can be used to improve detection of head impacts and TBI risk evaluation, and potentially extended to other sensors measuring kinematics.
translated by 谷歌翻译
Deep learning classifiers provide the most accurate means of automatically diagnosing diabetic retinopathy (DR) based on optical coherence tomography (OCT) and its angiography (OCTA). The power of these models is attributable in part to the inclusion of hidden layers that provide the complexity required to achieve a desired task. However, hidden layers also render algorithm outputs difficult to interpret. Here we introduce a novel biomarker activation map (BAM) framework based on generative adversarial learning that allows clinicians to verify and understand classifiers decision-making. A data set including 456 macular scans were graded as non-referable or referable DR based on current clinical standards. A DR classifier that was used to evaluate our BAM was first trained based on this data set. The BAM generation framework was designed by combing two U-shaped generators to provide meaningful interpretability to this classifier. The main generator was trained to take referable scans as input and produce an output that would be classified by the classifier as non-referable. The BAM is then constructed as the difference image between the output and input of the main generator. To ensure that the BAM only highlights classifier-utilized biomarkers an assistant generator was trained to do the opposite, producing scans that would be classified as referable by the classifier from non-referable scans. The generated BAMs highlighted known pathologic features including nonperfusion area and retinal fluid. A fully interpretable classifier based on these highlights could help clinicians better utilize and verify automated DR diagnosis.
translated by 谷歌翻译
Safety-critical Autonomous Systems require trustworthy and transparent decision-making process to be deployable in the real world. The advancement of Machine Learning introduces high performance but largely through black-box algorithms. We focus the discussion of explainability specifically with Autonomous Vehicles (AVs). As a safety-critical system, AVs provide the unique opportunity to utilize cutting-edge Machine Learning techniques while requiring transparency in decision making. Interpretability in every action the AV takes becomes crucial in post-hoc analysis where blame assignment might be necessary. In this paper, we provide positioning on how researchers could consider incorporating explainability and interpretability into design and optimization of separate Autonomous Vehicle modules including Perception, Planning, and Control.
translated by 谷歌翻译
Graphic sketch representations are effective for representing sketches. Existing methods take the patches cropped from sketches as the graph nodes, and construct the edges based on sketch's drawing order or Euclidean distances on the canvas. However, the drawing order of a sketch may not be unique, while the patches from semantically related parts of a sketch may be far away from each other on the canvas. In this paper, we propose an order-invariant, semantics-aware method for graphic sketch representations. The cropped sketch patches are linked according to their global semantics or local geometric shapes, namely the synonymous proximity, by computing the cosine similarity between the captured patch embeddings. Such constructed edges are learnable to adapt to the variation of sketch drawings, which enable the message passing among synonymous patches. Aggregating the messages from synonymous patches by graph convolutional networks plays a role of denoising, which is beneficial to produce robust patch embeddings and accurate sketch representations. Furthermore, we enforce a clustering constraint over the embeddings jointly with the network learning. The synonymous patches are self-organized as compact clusters, and their embeddings are guided to move towards their assigned cluster centroids. It raises the accuracy of the computed synonymous proximity. Experimental results show that our method significantly improves the performance on both controllable sketch synthesis and sketch healing.
translated by 谷歌翻译
In frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems, downlink channel state information (CSI) needs to be sent from users back to the base station (BS), which causes prohibitive feedback overhead. In this paper, we propose a lightweight and adaptive deep learning-based CSI feedback scheme by capitalizing on deep equilibrium models. Different from existing deep learning-based approaches that stack multiple explicit layers, we propose an implicit equilibrium block to mimic the process of an infinite-depth neural network. In particular, the implicit equilibrium block is defined by a fixed-point iteration and the trainable parameters in each iteration are shared, which results in a lightweight model. Furthermore, the number of forward iterations can be adjusted according to the users' computational capability, achieving an online accuracy-efficiency trade-off. Simulation results will show that the proposed method obtains a comparable performance as the existing benchmarks but with much-reduced complexity and permits an accuracy-efficiency trade-off at runtime.
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) has been highly successful in transferring knowledge acquired from a label-rich source domain to a label-scarce target domain. Open-set domain adaptation (ODA) and universal domain adaptation (UNDA) have been proposed as solutions to the problem concerning the presence of additional novel categories in the target domain. Existing ODA and UNDA approaches treat all novel categories as one unified unknown class and attempt to detect this unknown class during the training process. We find that domain variance leads to more significant view-noise in unsupervised data augmentation, affecting the further applications of contrastive learning~(CL), as well as the current closed-set classifier and open-set classifier causing the model to be overconfident in novel class discovery. To address the above two issues, we propose Soft-contrastive All-in-one Network~(SAN) for ODA and UNDA tasks. SAN includes a novel data-augmentation-based CL loss, which is used to improve the representational capability, and a more human-intuitive classifier, which is used to improve the new class discovery capability. The soft contrastive learning~(SCL) loss is used to weaken the adverse effects of the data-augmentation label noise problem, which is amplified in domain transfer. The All-in-One~(AIO) classifier overcomes the overconfidence problem of the current mainstream closed-set classifier and open-set classifier in a more human-intuitive way. The visualization results and ablation experiments demonstrate the importance of the two proposed innovations. Moreover, extensive experimental results on ODA and UNDA show that SAN has advantages over the existing state-of-the-art methods.
translated by 谷歌翻译